Scenic Brook Flood Control Project, Hydrologic Modeling & Dam Hazard Analysis
The Scenic Brook neighborhood is located on the Scenic Brook Tributary to Williamson Creek in the City of Austin. The neighborhood has been plagued by frequent local flooding. The City hired a team to develop mitigation measures. As part of the solution, the team identified a stormwater detention pond up gradient from South Brook Drive to reduce peak flowrates entering the neighborhood. We provided the following:
Developed the SCS TR-20 model for the existing and future condition for the 2-, 5-, 10-, 25-, and 100-year storms
Coordinated with TCEQ staff on dam safety requirements.
Coordinated with staff in adjusting detention pond outlet structures to meet flood control objectives and TCEQ requirements. The detention pond consisted of a concrete retaining wall embankment, and is approximately 16’ high with a flood storage volume of about 22 acre-feet.
Developed dam safety analysis using the Probable Maximum Flood (PMF) storm event
Prepared engineering report documenting the project approach and conclusions.
Doucet performed a hydrologic and hydraulic study of the existing storm drain network in the lower Fort Branch Oak Lawn Subdivision area bounded by Springdale, Heflin, Webberville, and Ribecke roads. This area was identified as having localized flooding problems through the Fort Branch Watershed Integrated Solutions Study. As a result, new storm drain systems were designed to supplement the existing systems. The final design encompassed approximately 5,500 LF of storm drain pipe and 2,000 LF of water main.
Over 100 linear feet of existing 36” diameter concrete wastewater line lost the cover and backfill due to scour and downcutting of Country Club Creek just upstream of Grove Boulevard. The line was downstream of the Austin Community College Riverside Campus and many apartment complexes. The exposed line was vulnerable to being deflected with opening pipe joints and wastewater spills if not stabilized. We designed a stabilized riffle downstream of the problem area to stable upstream environment for the new backfill around the exposed wastewater line. To stabilize the exposed wastewater line, an external gasket was used at each joint. The final design included normal bedding for the pipeline to the haunch, rock ballast to the top of the pipe and top it off with 12” diameter rock riprap.
Most of the Austin’s watersheds, including urban and suburban watersheds, are drained by streams that exhibit existing creek bank erosion problems and have the potential for future creek bank degradation. The concern for future creek bank failures, long term channel degradation, and their impact to creekside residents and water quality initiated the City of Austin Drainage Utility Department to authorize the city wide watershed erosion assessments in January 1997. The 17 watersheds are as follows: Barton Creek Watershed Blunn Creek Watershed Boggy Creek Watershed Bull Creek Watershed Buttermilk Creek Watershed Country Club Creek Watershed East Bouldin Creek Watershed Fort Branch of Boggy Creek Watershed Johnson Creek Watershed Little Walnut Creek Watershed Shoal Creek Watershed Tannehill Branch of Boggy Creek Watershed Waller Creek Watershed West Bouldin Creek Watershed Walnut Creek Watershed Williamson Creek Watershed
Doucet prepared “natural channel” design which incorporated floodplain creation and bioengineering to maintain bed load transport and flow conveyance in a stable channel system.
Doucet stabilized the stream banks and maintained bed load transport. Different techniques such as geogrid, large boulders, erosion fabrics, and bioengineering were employed to manage the channel erosion while creating a natural channel appearance.
The Shoal Creek hike and bike trail experienced erosion problems in the lower reaches of Shoal Creek, often completely washing the trail out at some locations along the top of the channel banks. The project designed solutions for nine separate erosion locations along Shoal Creek in the area from 6th Street to 29th street. Nine areas were selected for improvements and were developed using varying techniques such as limestone boulders with geogrid for stability, erosion matting, permeable concrete for trails, and bioengineering were employed to manage erosion of the trails while creating a natural appearance for the channel.